
Exercise: Familiarize Our Compute Server

July 30th, 2022 # ver. f22a # E002CServeV4.docx, A1

EN 827102 Pattern Recognition and Object Detection

E002: Familiarize Our Compute Server

Faculty of Engineering, Khon Kaen University

Submission: https://autolab.en.kku.ac.th

==

* Each question or problem is worth 840 points.

* To access the server, you need:

** Secure Shell (SSH) tool, e.g., : Putty.

** SSH File Transfer (SFTP) tool, e.g., FileZilla.

** Note: specify both SSH and SFTP with part 22.

** Option: VPN is needed for access from outside KKU.

** Account: as delivered in class.

* Server: mozart.en.kku.ac.th

==

Q1. Explore server information.

* Q1.1 Use command lsb_release -a to learn about Ubuntu version: what
release is the ubuntu running on the server?

* Q1.2 Use command lscpu to learn about the cpus: what is the cpu’s model
name?

* Q1.3 Use command df -H to learn about the system storage: what is
/dev/sda1 mounted on? And how much available space does it have?

* Q1.4 Use command ifconfig to learn about the server’s network
connection: what is the IPv4 address of the server’s first network card enp4s0
(hint: look for inet)

* Q1.5 Use command ps -ef to learn about the server’s running processes:
which columns show process id, start time, running time, and command that is
running? Answer in order. (The UID column is counted as the first column or
column 1.)

Exercise: Familiarize Our Compute Server

July 30th, 2022 # ver. f22a # E002CServeV4.docx, A2

Write your answers in the following format. Keep the text in blue, but edit the
red bold text for your answer.

Q1.1. Release = 0.00
Q1.2. Model name = ????
Q1.3. The /dev/sda1 is mounted on ???? and it has ???? available.
Q1.4. Address = ????
Q1.5. Columns ?, ?, ? and ?

Q2. Navigate the file system. Log in the server and do the following.

* Q2.1 Starting from your home directory (cd ~). Use command cd .. to
back out one step and then use command pwd to see current location in the file
system: what is your current location?

* Q2.2 Use command ls -alt to explore the contents of the current location:
what is the attribute of README? (hint: the attribute is shown in the first field.)

* Q2.3 Read the content of README: what does it say? (There are various
utilities, e.g., more README.) Have your answer in only one line. If the content
is long, write only the first line.

Write your answers in the following format. Keep the text in blue, but edit the
red bold text for your answer.

Q2.1. location = ????
Q2.2. attribute = ????
Q2.3. README = ????

No-grading exercises:

* Try copy (cp) the file into your directory.

* Try edit the copied file (e.g., pico).

* Create a directory (mkdir) and move (mv) the file into the directory.

* Remove the file (rm).

* Remove the directory (rmdir)

Q3. Run a program

* Q3.1 At your home directory (cd ~), start a python interactive session
(python) and try running the following code:

Exercise: Familiarize Our Compute Server

July 30th, 2022 # ver. f22a # E002CServeV4.docx, A3

>>> import os
>>> fh = open(os.path.join(os.getcwd(), “q3p1.out”), “w”)
>>> fh.write(os.getcwd())
>>> fh.close()

What is the name of the file it creates? (Answer just the bare filename without its
path) And, what is the size of the file (in byte)?

* Q3.2 Create a file, write the following code, save it as waitforQ.py.

waitforQ.py
import time
import os

if __name__ == '__main__':

 for n in range(30):
 if os.path.exists("./Q"):
 print("Found Q!")
 break
 print('check:', time.ctime())
 time.sleep(10)

 else:
 print("Q has not come!")

Then run it: python waitforQ.py. The program will keep checking for a file
named “Q”, once it found Q, it will terminate and print out: when it found Q, what
does it print out?

Anyhow, to keep it from running forever, it will terminate within 5 minutes
regardless.

Hint: push the running process into background (Press [Ctrl] and [Z]; then
type bg) and create the file named Q (touch Q) so that the program can be
terminated properly.

Write your answers in the following format. Keep the text in blue, but edit the
red bold text for your answer.

Q3.1. file name = ???? ; size = 0
Q3.2. print out = ????

No-grading exercises:

* Repeat Q3.2, but run the program in the background in the beginning with

python waitforQ.py &

While it is still running, check out the process (ps -ef): what is the process id?

* Finish the process above by creating Q and re-check the process: is it still
running?

Exercise: Familiarize Our Compute Server

July 30th, 2022 # ver. f22a # E002CServeV4.docx, A4

Q4. Run a program through a docker container.

* Q4.1 Check versions of base python, numpy, and torch in the host (mozart).
Also, check if library apex has been installed in the host. I.e., run python Q4.py
on the host.

Q4.py
import numpy as np
import torch
import sys

if __name__ == '__main__':

 print("Python version:", sys.version.split()[0])
 print ('Numpy version:', np.__version__)
 print('PyTorch version:', torch.__version__)

 try:
 import apex
 print('Apex is installed.')
 except Exception as e:
 #print('import apex: error =', e)
 print('Apex is not installed.')

* Q4.2 Check versions of base python, numpy, and torch in the docker image
nvidia_ssd. Also, check if library apex has been installed in the image
nvidia_ssd.

We will run the same program Q4.py, but through container nvidia_ssd.

4.2.1. Start docker in an interactive mode with mounting point, e.g., suppose
Q4.py is in ~/work, we will mount ~/work to the container mounting point,
e.g., /host.

I.e., run

docker run --rm -it --ipc=host -v ~/work:/host nvidia_ssd

Or, if GPU is available (and we need it), we can run

docker run --rm -it --gpus=all --ipc=host -v ~/work:/host nvidia_ssd

Note: check if GPU is available using either nvidia-smi or nvtop.

4.2.2. In a container, run python /host/Q4.py.

Example

Host
$ ls ~/work
Q4.py

Exercise: Familiarize Our Compute Server

July 30th, 2022 # ver. f22a # E002CServeV4.docx, A5

$ docker run --rm -it --ipc=host -v ~/work:/host nvidia_ssd
 Container (nvidia_ssd)
 root@e3775d2461f6:/workspace/ssd# python /host/Q4.py

Python version: 3.8.8XXXXXXXXXXXXXX<blind>XXXX
Numpy version: 1.20.1XXXXXXXXXXXXXX<blind>XXXX
PyTorch version: 1.9.0a0+2ecb2c7XXX<blind>XXXX
Apex is installed.XXXXXXXXXXXXXXXXX<blind>XXXX

 root@e3775d2461f6:/workspace/ssd# exit
exit

Write your answers in the following format. Keep the text in blue, but edit the
red bold text for your answer.

Q4.1. mozart: python = 0.0.0; numpy = 0.0.0; torch = 0.0.0??+????; apex = no/yes
Q4.2. nvidia_ssd: python = 0.0.0; numpy = 0.0.0; torch = 0.0.0??+????; apex =
no/yes

Further study:

* Study a Single-Shot Detector model (SSD) by Liu et al., ECCV 2016, along
with implementation by Nvidia:

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch

under folder detection.

* If GPU is available, you can try train Nvidia’s implementation of SSD: see
example 4A or 4B.

Example 4A (train in an interactive mode): user sandee has directory box in
the home directory, run docker in an interactive mode (-it) and remove the
container after use (--rm) with gpu (--gpus=all) and shared memory (--
ipc=host) and mounting host directory ~/box to container’s /host/box.
Here, since this is just to take a glimpse into how things go, we train the model
for only 2 epochs (~30min per epoch), but the default is 65 epochs (expect ~33
hours). The trained weights will be saved to directory box on the host.

Host
sandee@bach:~$ ls
box examples.desktop
sandee@bach:~$ docker run --rm -it --gpus=all --ipc=host -v ~/box:/host/box
nvidia_ssd
 Container (nvidia_ssd)
 root@b48a2f010667:/workspace/ssd# ls /host

box
 root@b48a2f010667:/workspace/ssd# bash ./examples/SSD300_FP16_1GPU.sh .

./COCO --save /host/box --epochs 2
Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth"
to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth
100%|███|
97.8M/97.8M [00:01<00:00, 64.6MB/s]
DLL 2022-07-28 10:24:00.420611 - PARAMETER dataset path : ./COCO epochs :
2 batch size : 64 eval batch size : 32 no cuda : False seed : None

Exercise: Familiarize Our Compute Server

July 30th, 2022 # ver. f22a # E002CServeV4.docx, A6

checkpoint path : None mode : training eval on epochs : [21, 31, 37, 42,
48, 53, 59, 64] lr decay epochs : [43, 54] learning rate : 0.0026
momentum : 0.9 weight decay : 0.0005 lr warmup : 300 backbone :
resnet50 backbone path : None num workers : 4 AMP : True precision :
amp
Using seed = 4374
loading annotations into memory...
Done (t=0.55s)
creating index...
...
<omitted for brevity>
...
saving model...
DLL 2022-07-28 11:24:07.387370 - (1, 3696) model path :
/host/box/epoch_1.pt
DLL 2022-07-28 11:24:07.387495 - () total time : 3562.8619406223297
DLL 2022-07-28 11:24:07.387535 - ()

 root@b48a2f010667:/workspace/ssd# ls /host/box
epoch_0.pt epoch_1.pt

 root@b48a2f010667:/workspace/ssd# exit
exit

sandee@bach:~$ ls box
epoch_0.pt epoch_1.pt

These (e.g., epoch_0.pt) are trained weights saved at the specified epochs.

Example 4B (train in a script mode): to keep it short, here we also train for only
2 epoch, (Nvidia’s default is set to 65). We prepare directory ~/box2 for the
trained weights. Note that shell script SSD300_FP16_1GPU.sh along with other codes
and data is already in the container, c.f., command we use in example 4A.

Host
sandee@bach:~$ mkdir ~/box2
sandee@bach:~$ nohup docker run --rm --gpus=all --ipc=host -v ~/box2:/host/box2
nvidia_ssd bash ./examples/SSD300_FP16_1GPU.sh . ./COCO --save /host/box2 --epochs 2 &
 [4] 109404
sandee@bach:~$ nohup: ignoring input and appending output to '/home1/sandee/nohup.out'
sandee@bach:~/box/ssd$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Jul13 ? 00:00:28 /sbin/init
root 2 0 0 Jul13 ? 00:00:00 [kthreadd]
root 3 2 0 Jul13 ? 00:00:00 [rcu_gp]
...
<omitted for brevity>
...
sandee 109404 105022 0 21:02 pts/1 00:00:00 docker run --rm --gpus=all --
ipc=host -v ~/box2:/h
...
<omitted for brevity>
...
sandee 109751 105022 0 21:05 pts/1 00:00:00 ps -ef

Tips: (1) recall that the trained weights will be saved in ~/box2; (2) it is a good
idea to memorize the process id, e.g., 109404, of the running program; (3) the
print out will be re-directed to, e.g., /home1/sandee/nohup.out as specified and
we can check the progress, e.g, tail /home1/sandee/nohup.out.

Exercise: Familiarize Our Compute Server

July 30th, 2022 # ver. f22a # E002CServeV4.docx, A7

Note you don’t have to do both interactive training (4A) and batch training
(4B). You can choose either way.

Once it is done, the trained weights are ready to use. You can load the
weights and test or use the model as shown in Example 4C.

Example 4C (load trained weights and test or use the model): suppose the
inference code (nvidiaSSD_inference.py) in ~/work/code, trained
weight (e.g., epoch_64.pt) in ~/work/weight, input images in
~/work/input on the host, these folder along with ~/work/output prepared
for saving the detection output will be mounted to the container. We will call
the inference code with the interactive session, then reap the detection results
from ~/work/output once the inference is done.

Host
sandee@bach:~$ cd work
sandee@bach:~/work$ ls
code input output weight
sandee@bach:~/work$ ls code
nvidiaSSD_inference.py
sandee@bach:~/work$ ls weight
epoch_64.pt
sandee@bach:~/work$ ls input
000000000139.jpg 000000000632.jpg
sandee@bach:~/work$ docker run --rm -it --gpus=all --ipc=host -v ~/work:/host
nvidia_ssd
 Container (nvidia_ssd)
 root@1a3539a6ea14:/workspace/ssd# cp /host/code/nvidiaSSD_inference.py .
 root@1a3539a6ea14:/workspace/ssd# python ./nvidiaSSD_inference.py >

/host/output/log
Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth"
to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth
100%|██████████████████████████████████████| 97.8M/97.8M [00:01<00:00,
64.9MB/s]

 root@1a3539a6ea14:/workspace/ssd# ls /host/output
log pred000000000139.out pred000000000632.out

 root@1a3539a6ea14:/workspace/ssd# exit
exit

sandee@bach:~/work$ ls output
log pred000000000139.out pred000000000632.out

Example 4D (visually inspect the detection results):

Run ShowDetectionResults_colab.ipynb on colab or locally.

(See the attached hand-out.)

