// SplayTree class // // CONSTRUCTION: with no initializer // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x // boolean contains( x ) --> Return true if x is found // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // ******************ERRORS******************************** // Throws UnderflowException as appropriate /** * Implements a top-down splay tree. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class SplayTree<AnyType extends Comparable<? super AnyType>> { /** * Construct the tree. */ public SplayTree( ) { nullNode = new BinaryNode<AnyType>( null ); nullNode.left = nullNode.right = nullNode; root = nullNode; } private BinaryNode<AnyType> newNode = null; // Used between different inserts /** * Insert into the tree. * @param x the item to insert. */ public void insert( AnyType x ) { if( newNode == null ) newNode = new BinaryNode<AnyType>( null ); newNode.element = x; if( root == nullNode ) { newNode.left = newNode.right = nullNode; root = newNode; } else { root = splay( x, root ); int compareResult = x.compareTo( root.element ); if( compareResult < 0 ) { newNode.left = root.left; newNode.right = root; root.left = nullNode; root = newNode; } else if( compareResult > 0 ) { newNode.right = root.right; newNode.left = root; root.right = nullNode; root = newNode; } else return; // No duplicates } newNode = null; // So next insert will call new } /** * Remove from the tree. * @param x the item to remove. */ public void remove( AnyType x ) { if( !contains( x ) ) return; BinaryNode<AnyType> newTree; // If x is found, it will be splayed to the root by contains if( root.left == nullNode ) newTree = root.right; else { // Find the maximum in the left subtree // Splay it to the root; and then attach right child newTree = root.left; newTree = splay( x, newTree ); newTree.right = root.right; } root = newTree; } /** * Find the smallest item in the tree. * Not the most efficient implementation (uses two passes), but has correct * amortized behavior. * A good alternative is to first call find with parameter * smaller than any item in the tree, then call findMin. * @return the smallest item or throw UnderflowException if empty. */ public AnyType findMin( ) { if( isEmpty( ) ) throw new UnderflowException( ); BinaryNode<AnyType> ptr = root; while( ptr.left != nullNode ) ptr = ptr.left; root = splay( ptr.element, root ); return ptr.element; } /** * Find the largest item in the tree. * Not the most efficient implementation (uses two passes), but has correct * amortized behavior. * A good alternative is to first call find with parameter * larger than any item in the tree, then call findMax. * @return the largest item or throw UnderflowException if empty. */ public AnyType findMax( ) { if( isEmpty( ) ) throw new UnderflowException( ); BinaryNode<AnyType> ptr = root; while( ptr.right != nullNode ) ptr = ptr.right; root = splay( ptr.element, root ); return ptr.element; } /** * Find an item in the tree. * @param x the item to search for. * @return true if x is found; otherwise false. */ public boolean contains( AnyType x ) { if( isEmpty( ) ) return false; root = splay( x, root ); return root.element.compareTo( x ) == 0; } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = nullNode; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == nullNode; } private BinaryNode<AnyType> header = new BinaryNode<AnyType>( null ); // For splay /** * Internal method to perform a top-down splay. * The last accessed node becomes the new root. * @param x the target item to splay around. * @param t the root of the subtree to splay. * @return the subtree after the splay. */ private BinaryNode<AnyType> splay( AnyType x, BinaryNode<AnyType> t ) { BinaryNode<AnyType> leftTreeMax, rightTreeMin; header.left = header.right = nullNode; leftTreeMax = rightTreeMin = header; nullNode.element = x; // Guarantee a match for( ; ; ) { int compareResult = x.compareTo( t.element ); if( compareResult < 0 ) { if( x.compareTo( t.left.element ) < 0 ) t = rotateWithLeftChild( t ); if( t.left == nullNode ) break; // Link Right rightTreeMin.left = t; rightTreeMin = t; t = t.left; } else if( compareResult > 0 ) { if( x.compareTo( t.right.element ) > 0 ) t = rotateWithRightChild( t ); if( t.right == nullNode ) break; // Link Left leftTreeMax.right = t; leftTreeMax = t; t = t.right; } else break; } leftTreeMax.right = t.left; rightTreeMin.left = t.right; t.left = header.right; t.right = header.left; return t; } /** * Rotate binary tree node with left child. * For AVL trees, this is a single rotation for case 1. */ private static <AnyType> BinaryNode<AnyType> rotateWithLeftChild( BinaryNode<AnyType> k2 ) { BinaryNode<AnyType> k1 = k2.left; k2.left = k1.right; k1.right = k2; return k1; } /** * Rotate binary tree node with right child. * For AVL trees, this is a single rotation for case 4. */ private static <AnyType> BinaryNode<AnyType> rotateWithRightChild( BinaryNode<AnyType> k1 ) { BinaryNode<AnyType> k2 = k1.right; k1.right = k2.left; k2.left = k1; return k2; } // Basic node stored in unbalanced binary search trees private static class BinaryNode<AnyType> { // Constructors BinaryNode( AnyType theElement ) { this( theElement, null, null ); } BinaryNode( AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt ) { element = theElement; left = lt; right = rt; } AnyType element; // The data in the node BinaryNode<AnyType> left; // Left child BinaryNode<AnyType> right; // Right child } private BinaryNode<AnyType> root; private BinaryNode<AnyType> nullNode; // Test program; should print min and max and nothing else public static void main( String [ ] args ) { SplayTree<Integer> t = new SplayTree<Integer>( ); final int NUMS = 40000; final int GAP = 307; System.out.println( "Checking... (no bad output means success)" ); for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( i ); System.out.println( "Inserts complete" ); for( int i = 1; i < NUMS; i += 2 ) t.remove( i ); System.out.println( "Removes complete" ); if( t.findMin( ) != 2 || t.findMax( ) != NUMS - 2 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 2; i < NUMS; i += 2 ) if( !t.contains( i ) ) System.out.println( "Error: find fails for " + i ); for( int i = 1; i < NUMS; i += 2 ) if( t.contains( i ) ) System.out.println( "Error: Found deleted item " + i ); } }